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Abstract
The mean-field analysis of the filling transition is based on the simple effective
Hamiltonian. It is valid only in the long-wavelength limit and the transition
occurs in the temperature regime where the behaviour of the interface is
dominated by fluctuations. We evaluate the correlation function and the
roughness of the interface in the Ornstein–Zernike approximation. With the
help of the Ginzburg criterion we prove that the mean-field filling transition
breaks down in this temperature range. We propose the replacement of the
simple effective Hamiltonian with a more complex Hamiltonian evaluated using
Landau theory. This Hamiltonian can be used in the temperature regime where
fluctuations are negligible and the mean-field analysis is correct.

1. Introduction

The corrugation of the substrate can significantly influence fluid adsorption on a solid substrate.
When a planar substrate exhibits continuous wetting, a weak corrugation of the substrate
does not change the wetting temperature but a new first-order transition preceding the wetting
transition, called the filling or unbending transition, can appear at the liquid–gas coexistence.
It can occur when the corrugation amplitude exceeds a critical value. The filling transition
is usually studied with the help of mean-field theory based on the effective interfacial
Hamiltonian. Different shapes of the substrate have been discussed: sinusoidal [1–3], saw-
shaped [5] or piecewise circular [6]. While saw-shaped and piecewise circular substrates allow
for analytical results, the calculations for a sinusoidal substrate need some approximations.
Moreover, the effective Hamiltonian adopted in these studies can be used only when the system
is near the wetting point. In this case the interface strongly fluctuates, and the mean-field
analysis can break down. In section 2 we briefly describe the interfacial model and the analysis
of the filling transition for a sinusoidal substrate. In sections 3 and 4 we evaluate the interface
correlation function in the Ornstein–Zernike approximation, and the roughness of the interface.
We prove that mean-field theory cannot be used due to the divergence of the roughness of the
interface. In section 5 we argue that a more complex effective Hamiltonian evaluated using
Landau theory (relevant not only in the long-wavelength limit), can be adopted to the analysis
of the filling transition not only in the vicinity of the wetting point but also far from the wetting
temperature. In the second case the mean-field theory works well, and the phase diagram
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obtained by minimization of the effective Hamiltonian displays a more complex structure, as
the phase diagram obtained previously [1–3].

2. Mean-field filling transition

We discuss the periodically corrugated, one-dimensional substrate described by the function

b(x) = A(1 − cos qx), − Nπ

q
� x � Nπ

q
. (2.1)

A is called the corrugation amplitude of the substrate and q is the wavenumber of the substrate.
The substrate contains a large number N of segments; each one has the length 2π/q . The half
space z > b(x) is occupied by the fluid at the bulk liquid–gas coexistence, or more precisely,
infinitesimally close to the coexistence line on the gaseous side of the bulk phase diagram.
In the absence of the substrate, the gaseous phase is the only thermodynamically stable bulk
phase. In the presence of the substrate the quasi-liquid film can appear on the solid, due to the
interactions with the substrate, but far away from the wall, i.e. for large z the fluid is still in the
gaseous phase. When increasing the temperature to the wetting temperature TW along the bulk
coexistence line, the thickness of the liquid film grows to infinity. For the corrugated substrate
an additional thin–thick transition (called the filling or the unbending transition) can appear at
the specific temperature TF(q, A) less than the wetting temperature. When discussing the filling
transition much below the bulk critical point, one uses the standard effective Hamiltonian which
can be used when the corrugation of the substrate is small, i.e. when q A � 1

H[ f ] =
∫ Nπ/q

−Nπ/q
dx
[σ

2
f 2
x + ω(l)

]
, (2.2)

where f (x) denotes the position of the interface, l(x) = f (x) − b(x) denotes the liquid film
thickness and σ is the surface tension of the free liquid–gas interface. Hamiltonian (2.2) is
valid only in the asymptotic, wetting regime, i.e. when l(x) is very large. In consequence it can
be adopted only near the wetting point.

In this paper we discuss a system with short range interactions exhibiting continuous
wetting. We take into consideration the effective potential of the form

ω(l) = tW exp(−pβl) + U exp(−2pβl), (2.3)

where pβ is the inverse correlation length in the bulk liquid phase and t = T −TW
TW

is the reduced
temperature. For the wet state of the system t � 0, and for the partially wet state t < 0. U , W
are (positive) amplitudes of the repulsive and attractive part of the potential, respectively.

The mean-field approach consists of minimization of the effective Hamiltonian (2.2) in the
appropriate class of functions representing the film thickness. We represent it in a simple way

l(x) = l0 + B cos qx, (2.4)

where l0 and B has to be determined, when minimizing the effective Hamiltonian. The effective
Hamiltonian (2.2) supplemented by the interfacial shape (equation (2.4)) has the following
form

H(pβl0, pβ B) = πσq

2p2
β

(pβ B − pβ A)2

+ 2π

q
[tW exp(−pβl0)�(pβ B) + U exp(−2pβl0)�(2pβ B)], (2.5)

where

�(pβ B) = 1

π

∫ π

0
exp(−pβ B cos t) dt, (2.6)
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is the Bessel function I0(pβ B). Minimization of this Hamiltonian with respect to l0 gives the
B-dependent function l0(pβ B)

l0(pβ B) = lπ + p−1
β ln

(
�(2pβ B)

�(pβ B)

)
, (2.7)

where lπ = ln
(−2U

tW

)
is the mean-field equilibrium film thickness on the planar substrate.

Substituting l0(pβ B) into the Hamiltonian (2.5) we obtain a Hamiltonian of the form

H(pβ B) = πσq

p2
β

[
1

2
(pβ B − pβ A)2 − 1

(qξ‖π )2
�(pβ B)

]
, (2.8)

where ξ‖π = −
√

2σU
tW pβ

is the parallel correlation length of the interface for the planar substrate
and

�(pβ B) = �2(pβ B)

�(2pβ B)
. (2.9)

Minimizing Hamiltonian (2.8) we obtain the equation which determines the equilibrium value
of the undulation amplitude B̄

pβ B̄ − pβ A = 1

(qξ‖π)2
� ′(pβ B̄). (2.10)

Hamiltonian (2.8) can display two minima, depending on the parameters of the model.
The filling transition occurs provided the amplitude of the corrugation exceeds the critical
value [1–3]. The corrugation amplitude A determines the value of qξ‖π at the transition; ξ‖π
denotes the correlation length for planar substrate (it diverges at the wetting point). The value
of qξ‖π at the filling transition determines two undulation amplitudes B̄ and mean thicknesses
of the interface l0(B̄) of coexisting films. The analysis based on Hamiltonian (2.2) is, however,
very doubtful due to the form of the phenomenological Hamiltonian (2.2). It is only an
asymptotic form of a more exact expression, which can be evaluated using a more fundamental
theory (for example Landau theory [4]). It can be used only when the adsorbed film thickness
is very large, i.e. when the temperature is very close to the wetting temperature TW, and in
consequence when ξ‖π is very large too. To keep a constant value of qξ‖π , q has to be very
small. The mean-field transition based on Hamiltonian (2.2) occurs near the wetting point
where the interface strongly fluctuates, and in consequence the mean-field theory breaks down.
It is evident when one compares the difference in thickness of the adsorbed liquid layers at the
mean-field transition with the roughness of the interface.

3. Correlations in the Ornstein–Zernike approximation

In this section we evaluate the correlation function of the interface in the Ornstein–Zernike
approximation. We include both: short- and long-wavelength fluctuations. We rewrite the film
thickness in the following way

l(x) = lπ + δl(x). (3.1)

Next, we express δl(x) as the Fourier series expansion

δl(x) = 1
2 B0 +

M∑
k=1

Bk cos kqx +
M∑

k=1

Qk sin kqx (3.2)

+
N−1∑
n=1

Cn cos
nqx

N
+

N−1∑
n=1

Rn sin
nqx

N
. (3.3)
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Amplitudes {Bk, Qk} describe the short-wavelength fluctuations, M is the short-wavelength
cut-off. We do not discuss the value of M , for our purpose it is not important. We will
show that the short-wavelength fluctuations do not influence correlations in the thermodynamic
limit. Amplitudes {Cn, Rn} describe long-wavelength fluctuations. The Ornstein–Zernike
Hamiltonian has the following form

HOZ[δl] = σ

2

∫ Nπ/q

−Nπ/q
dx
(

f 2
x + ξ−2

‖π (δl)2
)
. (3.4)

It is a function of Fourier amplitudes

HOZ({Bk, Qk}, {Cn, Rn})
= πσ N

q

[
1
4ξ−2

‖π B2
0 + 1

2 (q2 + ξ−2
‖π )B2

1 − q2 AB1

× 1
2

M∑
k=2

(k2q2 + ξ−2
‖π )B2

k + 1
2

M∑
k=1

(k2q2 + ξ−2
‖π )Q2

k

+ 1
2

N−1∑
n=1

(
n2

N2
q2 + ξ−2

‖π

)
C2

n + 1
2

N−1∑
n=1

(
n2

N2
q2 + ξ−2

‖π

)
R2

n

]
. (3.5)

The partition function

Z(T, q, A, N)

=
∫

dB0

∏
k

d{Bkd Qk}
∏

n

d{Cnd Rn}e−βHOZ({Bk,Qk },{Cn ,Rn}), (3.6)

is a product of the partition functions of all modes

Z(T, q, A, N) = ZB
0

∏
k>0

ZB
k ZQ

k

∏
n

ZC
n Z R

n . (3.7)

The mean values of the amplitudes and the product of the amplitudes are very easy to evaluate
in the Ornstein–Zernike approximation

〈Bk〉|k �=1 = 0, 〈B1〉 = A
(qξπ )2

1 + (qξ‖π)2

〈Ck 〉 = 〈Qn〉 = 〈Rn〉 = 0, (3.8)

〈Bl Bl〉 = B2
k δk,l , 〈CnCm〉 = C2

nδk,l , 〈BkCn〉 = 0,

and

〈B2
0 〉 = 2kBT (qξ‖π)

πσ N
ξ‖π ,

〈B2
1 〉 = kBT (qξ‖π)

πσ N

ξ‖π
1 + (qξ‖π)2

+ A2(qξ‖π)4

(1 + (qξ‖π)2)2
,

〈B2
1 〉 − 〈B1〉2 = kBT (qξ‖π )

πσ N

ξ‖π
1 + (qξ‖π )2

, (3.9)

〈B2
k 〉∣∣

k �=1
= 〈Q2

k〉 = kBT (qξ‖π)

πσ N

ξ‖π
1 + k2(qξ‖π )2

,

〈C2
n 〉 = 〈R2

n〉 = kBT (qξ‖π)

πσ N

ξ‖π
1 + n2

N 2 (qξ‖π)2
.
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From equation (3.8) we obtain

〈δl(x)〉 = (qξ‖π )2

1 + (qξ‖π )2
A cos qx, (3.10)

〈 f (x)〉 = lπ − A cos qx

1 + (qξ‖π )2
. (3.11)

Equations (3.10) and (3.11) show that near the wetting temperature the mean interface position
is almost the same as the mean-field interface position over the planar substrate. At depinning,
the interface is very weakly influenced by the corrugation of the substrate.

The correlation function CN (x, y) is defined as

CN (x, y) = 〈(l(x) − 〈l(x)〉)(l(y) − 〈l(y)〉)〉. (3.12)

With the help of equation (3.9) we obtain

CN (x, y) = ξ‖π
kBT (qξ‖π)

πσ N

(
1

2
+

M∑
k=1

cos kq(x − y)

1 + k2(qξ‖π)2

)

+ ξ‖π
kBT (qξ‖π )

πσ

⎛
⎝N−1∑

n=1

cos nq(x−y)

N

N
[
1 + n2

N 2 (qξ‖π)2
]
⎞
⎠ . (3.13)

The first contribution to the correlation function vanishes in the thermodynamic limit N → ∞.
In the second contribution the sum over n is replaced by the integral, therefore we obtain

C∞(x, y) = ξ‖π
kBT

πσ

∫ qξ‖π

0
dt

cos
(

t (x−y)

ξ‖π

)

1 + t2
. (3.14)

The correlation function depends on the difference x − y. It can be expressed by integral sine
and integral cosine functions

C∞(x, y) = ξ‖π
kBT

2πσ

×
{
−
[

Si

(
x − y

ξ‖π
(qξ‖π + i)

)
+ Si

(
x − y

ξ‖π
(qξ‖π − i)

)]
sinh

(
x − y

ξ‖π

)

+ i

[
Ci

(
x − y

ξ‖π
(qξ‖π + i)

)
− Ci

(
x − y

ξ‖π
(qξ‖π − i)

)
+ Ci

(
−i

x − y

ξ‖π

)

− Ci

(
i
x − y

ξ‖π

)]
cosh

(
x − y

ξ‖π

)}
. (3.15)

The correlation function decays with the same correlation length ξ‖π as the correlation length
for the planar substrate. Functions Si and Ci oscillate, and in consequence the correlation
function oscillates too. If qξ‖π increases, the amplitude and the wavelength of the oscillations
decreases (see figures 1 and 2).

4. Roughness of the interface and the filling transition

The roughness of the interface ξ⊥ is defined as

ξ 2
⊥ = 〈(l(x) − 〈l(x)〉)2〉. (4.1)

It can be expressed by the correlation function

ξ 2
⊥ = C∞(x, x) = ξ‖π

kBT

πσ
arctan(qξ‖π ). (4.2)
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0

0.001

C(x,y)*

0.003

0.004

7 8

|x-y|/ξ||π

Figure 1. The correlation function C∗(x, y) = ξ−1
‖π

πσ
kB T C(x, y) for two different values of qξ‖π .

The correlation function decays exponentially with the same correlation length ξ‖π as for a planar
substrate, and oscillates. The greater qξ‖π , the smaller the amplitude and wavelength of the
oscillations. The curve with large oscillations corresponds to qξ‖π = 10 and the curve with small
oscillations corresponds to qξ‖π = 40. Both curves correspond to the regime qξ‖π > (qξ‖π)CF,
where the mean-field filling transition does not appear. The exponential decay with the correlation
length ξ‖π is plotted in the background as the dashed line.

It does not depend on x . The amplitude A of the substrate determines the value of qξ‖π at the
filling transition (we denote it by qξ‖π(A)), and therefore, when q is fixed, it determines the
filling temperature. The roughness of the interface diverges with the same power law as in the
planar case

ξ⊥ ∼ ξ
ζ

‖π , (4.3)

where ζ = (3 − d)/2 is the roughness exponent. (For d = 2, the roughness exponent is equal
to 1/2.) When the mean-field filling transition occurs near the wetting point, the transition is
wiped out by interfacial fluctuations. We compare the difference in the thickness of coexisting
films with the roughness of the interface

l̄1(x = 0, (qξ‖π)(A)) − l̄3(x = 0, (qξ‖π)(A)) = ξ⊥. (4.4)

If the temperature is greater than the temperature T0 determined by equation (4.4), the mean-
field predictions break down. The left-hand side of equation (4.4) is determined unambiguously
by the amplitude of the substrate; we denote it simply by �l̄(A). Equation (4.4) can be rewritten
in the explicit form

TW

T0
− 1 = kBTW

πpβW

√
2U

σ

arctan[(qξ‖π)(A)]
(�l̄(A))2

. (4.5)

Equation (4.5) represents the Ginzburg criterion which determines the applicability of the
mean-field theory. If T is greater than T0 determined by equation (4.5), the roughness of the
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C(x,y)*

0.0035

6 6.1 6.2

|x-y|/ξ||π

Figure 2. The correlation function C∗(x, y) for qξ‖π = 100.

interface is greater than the difference in the thickness of coexisting films, and the mean-field
theory breaks down. The value of qξ‖π at the filling transition is determined by the amplitude A
of the corrugation of the substrate. Only when this amplitude becomes infinitely huge does the
factor arctan[(qξ‖π)] vanish and temperature T0 tends to TW. (The mean-field filling described
in section 2 occurs when qξ‖π < (qξ‖π)CF, i.e. the factor arctan[(qξ‖π)] < 0.457 (±0.001).)
Our statement does not mean that the filling transition does not exist at all, but rather that the
model based on Hamiltonian (2.2) is wrong.

5. Beyond the critical region

The mean-field theory breaks down near the wetting point. Nevertheless it is still valid, when
the temperature is sufficiently lower than the wetting temperature. In this case the thickness
of the adsorbed film is finite, and the Hamiltonian (2.2) ceases to be adequate. Instead of
Hamiltonian (2.2) it is necessary to use a more complex Hamiltonian, for example

H[ f ] =
∫ Nπ/q

−Nπ/q
dx

[
�αβ(l)

2
f 2
x + λ(l) fx bx + �βw(l)

2
b2

x + ω(l)

]
. (5.1)

This Hamiltonian was previously evaluated using Landau theory [4]. �αβ(l) and �βw(l)
are the liquid–gas and liquid–substrate surface stiffness coefficients [7], respectively. Both
stiffnesses are dependent on l. Only when l becomes infinite are they equal to the relevant
surface tensions. λ(l) is the coefficient describing the coupling between undulations of the
substrate and interface. It vanishes when the thickness of the liquid film grows to infinity.
Hamiltonian (5.1) is valid for an arbitrary thickness of the adsorbed layer as opposed to the
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simplified form of Hamiltonian (2.2), which is restricted to the critical region only. When we
substitute the ansatz defined in equation (2.4) into Hamiltonian (5.1) we obtain a function which
depends explicitly on q/pβ [8]

H(pβl0, pβ B) = πσq

2p2
β

(pβ B − pβ A)2

+ 2π

q

{
Wt X0 I0(pβ B) + U X2

0 I0(2pβ B)

+
(

q

pβ

)2

pβ A(pβ B − pβ A)(2pβl0 − 1 − G)

×
(

Wt

4
X0

I1(pβ B)

pβ B
+ U X2

0

I1(2pβ B)

2pβ B

)

+
(

q

pβ

)2

pβ A(pβ B − pβ A)

×
(

Wt

4
X0

[
2I1(pβ B)

pβ B
− I0(pβ B)

]

+ U X2
0

[
I1(2pβ B)

pβ B
− 1

2
I0(pβ B)

])}
, (5.2)

where X0 = exp(−pβl0). Hamiltonian (5.2) is still a simplified form; it is valid for a finite,
but large, value of l(x). The phase diagram obtained when minimizing Hamiltonian (5.2)
displays a more complex dependence on the wavelength of the substrate than the phase diagram
obtained from the phenomenological Hamiltonian (2.2). The filling temperature depends not
only on qξ‖π but also on c = q/pβ . Figure 3 presents the phase diagram for three different
values of c. When c = 0 we obtain the phase diagram based on the Hamiltonian (2.2) and, in
consequence, on Hamiltonian (2.8). c = 0 is the long-wavelength limit, i.e. the case of infinite
wavelength of the substrate with respect to the parallel correlation length ξ‖π . This second
length itself becomes infinite in the fluctuation regime which is connected to the validity of
Hamiltonian (2.2); in this regime the mean-field approach breaks down. In the mean-field
regime, the locus of the filling transition on the (pβ A, (qξ‖π )−1) plane is determined by the
ratio q/pβ .

6. Conclusions

The simple mean-field analysis of the filling transition based on the Hamiltonian (2.2) [1–3]
is inadequate. The corrugation amplitude of the substrate A unambiguously determines the
value of qξ‖π at the transition. In consequence the transition temperature depends on the
wavelength of the substrate through the ratio of the wavelength of the substrate and the parallel
correlation length ξ‖π . One obtains the same phase diagram for a wide range of temperature,
including temperatures close to the wetting temperature. The starting point of this analysis,
Hamiltonian (2.2), can be used only when the temperature is close to the wetting temperature
of the substrate. This restricts the applicability of the model to the vicinity of the wetting
point, and in consequence to a very large value of the wavelength of the substrate. From the
other side the interface strongly fluctuates when the temperature approaches the (continuous)
wetting temperature. We have evaluated the parallel correlation function and the roughness of
the interface over the corrugated substrate for a two-dimensional system. The roughness of the
interface diverges with the parallel correlation length ξ‖π in the same way as in the case of a
planar substrate. The Ginzburg criterion determines the critical region, where the behaviour
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1.6
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2

2.2

2.4

2.6

2.8

3

3.2

3.4

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

p A

(qξ||π)
-1

c=0

c=0.1

c=0.2

β

*
*

*

Figure 3. The phase diagram of the filling transition for c = 0, 0.1 and 0.2, respectively. The
diagram is determined for G = 0.5, and U/σ = 1. Stars denote the filling critical point.

of the interface is governed by fluctuations and the mean-field approach breaks down. The
mean-field analysis is still valid when the temperature is sufficiently lower than the wetting
temperature, but in this case Hamiltonian (2.2) must be replaced by Hamiltonian (5.1). It
displays a more complex structure of the phase diagram. The locus of the filling transition is
determined not only by the ratio of the parallel correlation length ξ‖π to the wavelength of the
substrate but also by the ratio of the bulk correlation length to the wavelength of the substrate.
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